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Synopsis

Why imaging?

Simple image reconstruction.
The importance of phase information.
Closure phase.

Measuring the closure phase.
Visibility calibration.

Nonlinear image reconstruction.
Example from real data - Betelgeuse.



A simple interferometer

= Two-element radio
telescope, no v -
atmospheric i T
perturbations.

= Measures

V(u,v)=F.T.{B(x,y)} ) u,v -
= Can move the NG
elements to sample .

X <
the u,v plane as we v
like.




Why imaging?

« If we measure V(u,v) for all u,v, we can use an
Inverse Fourier transform to get an image of the
source.

= An alternative Is to measure V (or |V|) at a small
subset of u-v points and then fit an astrophysical
model with a small number of parameters -
modelfitting (sometimes called “parametric
Imaging”).

= This can be dangerous.



Modelfitting vs imaging

SED of IRC+10216: spherically symmetric
model (Ivezic & Elitzur, 1996)
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Actual distribution of 2 micron flux (Tuthill et
al, 2000)




Imaging

= Moral: there is no substitute for model-independent
Images.

= This conclusion will lead us down a tortuous path:
¢ U-V coverage.
¢ Closure phase.
¢ Visibility calibration.
¢ Nonlinear image reconstruction.




U-V coverage

= Can only sample a discrete set of points in the U-V
plane — call this sample the synthetic aperture

¢ The aperture is finite.
¢ The aperture is dilute.

« Can tackle both of these using the convolution
theorem.
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Choosing a U-V coverage

= Strongest constraints are practical:
¢ Amount of time to reconfigure telescopes;
¢ Earth rotation;
¢ Local topography;
¢ Bootstrapping.
= The convolution theorem is again useful:

¢ If the source is known to be a finite size, this is the same as
an infinite source truncated with a tophat of size 6.

¢ Hence V(u,v) Is correlated on scales of A/8_
4 No point sampling on scales much finer than this.



The phase problem.

= Now we add the atmosphere (in a simple form).

= Adds a random phase (rms >> 211) over each
aperture.

= This means that only |V(u,v)| Is easily measured —
phase information is “lost”.

= In principle, you can reconstruct images from
~ourier modulus information alone.

= |n practice, this works only with perfect data.
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Why you need phases
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Methods of getting the phase (i)

# £
= From an external phase
reference:
¢ Nearby guide star: patch of
- internal metrology turbulence

= limited sky coverage
- anisoplanatism.

& Laser reference — possible telescope
(balloons?) but challenging



Methods of getting the phase (ii)

=« Self-referenced methods — use the source itself.

¢ Phase referenced to a different wavelength
- Source-dependent
- Need to know where group delay centre Is

- Need to know atmospheric path & dispersion
« Water-vapour variations can be important

& Phase referenced to other baselines
~ Closure phase



The closure phase (1)

« Consider an array of N telescopes:
¢ Can measure N(N-1)/2 baseline phases.
¢ Subject to N-1 unknown phase perturbations.

¢ Can therefore solve for (N-1)(N-2)/2 quantities
which are dependent only on the source phase.

¢ The simplest (but not the only) parameterisation of
these source-dependent quantities are the closure
phases: combinations of phases on closing triples
of baselines.




The closure phase (i)

M easured Source “Antenna’
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The closure phase (lii)

= The full set of closure phases is overdetermined for
N > 3:
¢ (N-1)(N-2)/2 independent source guantities
- 10 for N=6
¢ N(N-1)(N-2)/6 triples of antennas

- 20 for N=6
= Higher order “closure phases” exist, e.g.
Pyt Dot Dgyt By
¢ Also immune to antenna errors
¢ \Worse SNR than triple



Measuring (closure) phases In

noisy conditions
P(¢)

=« Averaging phases /\
directly leads to biases, I

especially in noisy
conditions.

« Use the vector average
to avoid bias under all
noise conditions

¢ Converges even when
SNR<<1




The triple product

= In averaging the closure phase, can weight the
vectors with the product of the amplitudes:

phasor = [Vy,| [Vyg| [V31] exp(idP, +1dys +1dD5)
= But this is simply the product of the complex
visibilities
T123= Vi5Vo3V3
= We call this the triple product or “bispectrum”
¢ Better SNR than unit-weighted vectors.
¢ Other nice properties.




Noise on the triple product

« Definition of phase error: I
m
Oy = 0 /|| A

- For circularly symmetric noise =0, Og 5
0, = 1/(V2xSNR) II
= For SNR>>1 S
Op*(T123) L0 g*(V12)+ 0g%(V3)*+ 06%(V3y)
« For SNR<<'1 » Re

09°(T123) 10 §*(V12)06°(V23)0g%(V31)
= C.f. noise on visibility modulus o?(|V|? )O[0?%(V)]?

= However, many useful cases where two baselines have
high SNR and one has low SNR

¢ Low-SNR baseline “phased up” using high-SNR baselines.



Noise correlations

= In the high-SNR regime, the noise on triple products
sharing a common baseline is correlated.

= Inthe low-SNR regime, the noise on all triple products is
uncorrelated.
¢ Means that measuring the full set of closure phases helps to

beat down the noise.

« Radio VLBI corresponds to the high-SNR regime.

= Optical interferometry usually corresponds to the low-SNR
regime — can take 1000’s of measurements to get low-error
averaged data.

¢ Radio imaging programmes don’t make use of all the
Information in optical datasets.



Measuring closure phases In
practice — image plane
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Take many fast exposures on detector.

Choose atriple of apertures, e.g. A, B, C and get a corresponding
triple of spatial frequencies 1,3,4 (1,2,3 will not work!).

Multiply the complex Fourier amplitudes T 5=V, V3 V,.




I\/Ieasurmg closure phases (cont’d)
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Average over many samples and take argument —
closure phase.

Important to get a closing set of spatial frequencies
u,+us+u, = 0.



Pupil plane
combination

Interference occurs on
beamsplitters.

Aligned to give a single
fringe across the beam.

Focus onto single-pixel

detectors, e.g. APDs. i
Fringe signal detected
by temporal path g A e .
modulation. /




Pupil plane combination (cont'd
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Puplil plane combination (cont’d)

Path Delay (in wavelengths)
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For multi-bédin combination need to have fringes from
different baselines at different frequencies.

Corresponds to different modulation speeds d¢/dt for
different beams.

Temporal F.T. - complex visibility phasors, then same as
Image plane combination.




Pairwise VS aII together

All pairwise

together Xé z -
X K

« SNR Is comparable.

= All together is immune to internal path errors — no
closure phase calibration necessary.

= Pairwise has no amplitude crosstalk between
baselines — all together requires well-separated set
of frequencies.



Visibility calibration

=« Have so far been considering a wavefront error which is
fixed In time and flat across each telescope.

= Higher-order effects bias the visibility amplitude to smaller
values.

« Can calibrate this visibility reduction by measuring the
visibility on a point source.

= Atmospheric seeing varies on all timescales, so the visibility
reduction is time-dependent.

¢ Need to calibrate often.
= Spatial filtering using e.g. monomode fibres helps with this.



Image reconstruction

Easy (just
hysics
Model | Physics) Data
Hard

= Aninverse problem:

¢ Forward transform, e.g. from a sky brightness distribution to
measured visibilities and closure phases, is easy to do.

¢ Inverse transform hard to derive, may not be unigue due to
noise & missing data.



Inverse problems: Bayes’ theorem

Bayes theorem:

¢ Tells us guantitatively the best thing to do with
uncertain information.

¢ prob. of model given data U prior prob of model x
prob of data given model.

Recipe:
¢ Generate all possible models (tedious but possible).

¢ Find the likelihood that each model would have
generated the data (easy).

¢ The one which best predicted the data wins (modulo
prior information).



Bayes’ theorem and closure
phases.

= The interpretation of a closure phase is now more
clear — a closure phase is a constraint on the set of
all possible images.

= Acts In concert with all other constraints
¢ Amplitudes.
¢ Source positivity.
¢ Source finite extent.

= No need to invent a special procedure for

converting closure phases to images — just use
Bayesian recipe with the forward transform.




Recursive phase reconstruction
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= Not Bayesian.

= Algorithm:

¢ Arbitrarily choose a phase for baseline 12 (which is
also that for 23, 34, ...)

¢ Using ®,,, can now derive phase on baseline 13.
¢ Repeat to generate all phases.
¢ Combine with Fourier amplitudes & FT - image.




Limitations of recursive phase
reconstruction

= Needs redundant array — wasteful of telescopes.
= Noise propagation is poor.
« Still need to deconvolve image.

« Doesn’t make use of image-plane constraints in
derivation of phases.
However:

= |t illustrates that it is by combining closure phases
that we constrain phases.

= The closure phases do not constrain the phase
completely — source position is unconstrained.



Self calibration

« Radio VLBI imaging
method.

« Forward model
explicitly includes the
antenna phase errors.

« Solves for image-plane
constraints and data at
the same time.

= Does not depend on
starting image
(usually!)

{ Starting image}

4L
—»—{FT to get baseline phases }

Il
A [ Solve for best-fit antenna}

phases.

4L
{II—‘I’toget dirtyimage.}
g

Deconvolve image, applying
Image-plane constraints

1l
L { Converged? }
yes|



Direct reconstruction (BSMEM)

= Limitations of self-cal
¢ Noise model on closure phases assumes high SNR.
¢ Cannot use disjoint sets of amplitudes and closure phases.

= Alternative method: direct comparison of models and
amplitudes, triple products.

¢ Model is a set of pixel brightnesses.

¢ Use gradient-descent methods to efficiently find best-fit
image.

¢ Maximum entropy used to enforce positivity.

¢ All constraints applied simultaneously
- Deconvolution & phase retrieval in one step.



BSMEM results

SNR - 1.26

= Classic self-cal breaks down
when the effective SNR per
baseline is <~2. e

= Direct reconstruction can s
return good results under '
these conditions, provided
there is a large number of
different closure phases. E

= Effectively averaging 1,
different closure phase
Information together.

- 0.31

SNR - 2.50

SNR - 500
SNR - 0.63




Imaging example: Betelgeuse

Mon. Not. R. astr. Soc. (1990) 245, Short Communication, Te-11p

Detection of a bright feature on the surface of Betelgeuse

D.F. Buscher,! C. A, Haniff,"-2 J. E. Baldwin! and P. J, Warner!

' Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE
? Palomar Observatory, California Institute of Technology, Pasadena, CA 91125, USA

Accepted 1990 April 18, Received 1990 Aprnil 17

SUMMARY

We present high-resolution images of the M-supergiant Betelgeuse in 1989 February
at wavelengths of 633, 700 and 710 nm, made using the non-redundant masking
method. At all these wavelengths, there is unambiguous evidence for an asymmetric
feature on the surface of the star, which contributes 10-15 per cent of the total
observed flux. This might be due to a close companion passing in front of the stellar
disc or, more likely, to large-scale convection in the stellar atmosphere.



Betelgeuse: experimental setup

g mask
N Fast 1-d
g binning
CCD
e]l-d mask & 1-d
CCD readout
eRotate mask to

achieve 2-d Fourier
coverage.




Betelgeuse results: Fourier data
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Betelgeuse results:interpretation

= Betelgeuse is resolved on 4m baselines.
= Betelgeuse has significant non-zero closure phases which
vary slowly as a function of PA.
¢ A symmetric object has all closure phases 0° or 180°.

¢ Betelgeuse must be asymmetric and the asymmetry is on
scales comparable with the disk size.

= Relative flux in the asymmetry must be comparable to
visibility on long baselines.

¢ ~10% of total flux.
=« Can measure closure phase to ~degree.

¢ Corresponds to relative astrometry of 3 microarcseconds with
a 100m baseline.



Betelgeuse results: imaging

Agrees with interpretation
done “by hand”.

Quantitative results from
modelfit after image
reconstruction.

Closure phase iIs very
Important in constraining
iImage.




Summary

= You need model-independent images.

= You need good u-v coverage.

= You need the phase, and closure phase is a good
way of getting it.

= The closure phase acts as a powerful constraint in
Image reconstruction.




